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On the Contribution of Short-Term Fluctuations to the Variance of the Measured Intensity 
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The contribution of short-term fluctuations to the variance of the net intensity is shown to increase the 
variance above usual Poisson statistics and to be dependent upon two factors: the instrumental sta- 
bility and the reflexion profile or time spent measuring a given data point. Simple formulae accounting 
for the increase in variance from normal Poisson statistics are presented. 

Introduction 

The statistical treatment of short-term fluctuations or 
drift during the course of a measurement of a reflexion 
has received very little theoretical attention. It has 
been recognized experimentally that fluctuations will 
affect the counting statistics and increase the variance 
in excess of that predicted by ordinary Poisson 
statistics (Schulz & Huber, 1971a, b). To account for 
the increase in variance, Schulz & Huber have modified 
the ordinary Poisson variance by a simple multiplicative 
factor, c, that is, 

~ ' ( k ) = c k  , (1) 

where c is greater than one and k represents the 
number of counts received in a given time interval. 

Other authors have suggested the empirical modifi- 
cation to the variance (Busing & Levy, 1957; Peterson 
& Levy, 1957; Corfield, Doedens & Ibers, 1967; 
Stout & Jensen, 1968, p. 456; McCandlish, Stout & 
Andrews, 1975), 

a~(k)  = k + c ' k  ~ , (2) 

where c' is a constant which can be related to the 
estimated value of the instrumental instability. In this 
note we propose a theoretical treatment of this pro- 
blem together with the derivation of simple formulae 
which can be used to account for the increase in 
variance from normal Poisson statistics. 

Theory 

Fluctuations or variations of the intensity of the 
diffracted beam can be attributed to various sources. 
Of these, fluctuations of the incident beam and of the 
crystal orientation are probably the most important. 
To facilitate the subsequent analysis, it is advan- 
tageous to assume that fluctuations may be decom- 
posed into two independent components. The first 
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represents a slow or long-term drift which is considered 
to be constant during the measurement of a reflexion 
and can be completely determined by repeated meas- 
urement of reference reflexions suitably spaced in 
time. The second component represents short-term 
fluctuations occurring during the measurement of a re- 
flexion and will be described as a continuous, stationary 
stochastic process. Such a process is realized when the 
nature of the fluctuations is the same from one meas- 
urement period to the next. This is normally found to 
be true provided that the crystal is firmly mounted 
and the power supply is well regulated. 

The effect of short-term fluctuations cannot be se- 
parated from the statistical process of diffraction. In 
the absence of any fluctuations, this process can be 
characterized by the Poisson parameter,t 

where 10 is the incident beam intensity per unit time 
interval, f( t)  is the probability that a photon is dif- 
fracted at time t, and the integration is made over 
the time interval, (tl, t2), of the measurement of the 
reflexion. 

The effect of random fluctuations on 10 and f(t)  
results in 2 becoming a random variable. In the absence 
of any a priori model, fuctuations of the incident 
beam, I0, and of crystal orientation affectingf(t) can- 
not be distinguished from a single process occurring 
in the incident beam only. Provided that maximum 
noise amplitudes, l,(t), are at least one order of mag- 
nitude smaller than Io, l,(t) can be incorporated into 
equation (3) in an additive manner: 

2= Itti[lo + ln(t)]f(t)dt (4) 

where the long-term drift is constant during the meas- 
urement. The equation (4) represents a stochastic 

t A Poisson process is represented by a frequency distribu- 
tion, ~op(k)=e-X2k/k! where k is the number of counts 
measured in a given time interval. 
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integral whose statistics generally depend on the size 
of the interval, (q, t2). The subsequent counting sta- 
tistics must now be based upon a double stochastic 
Poisson process (Cox, 1955; Bartlett, 1963). The fre- 
quency distribution of this process is 

~op(k)= Ez{e-Z2k/k! } , (5) 
where k is the number of counts received in the time 
interval, (q, t2), and Ex{ } is the expectation operator 
with respect to the frequency distribution of 4. If it is 
assumed that short-term fluctuations are zero on the 
average, the expected value of the number of counts 
received in time interval (fi,/2) is 

with. 

where 

E(k)= Ez{2} = Io lttlf(t)dt 

o2(k)=E~{X} +o2{2}, 

a2{2}= Ea{22}-(E~{2})z . 

(6) 

(7) 

(8) 

Then the effect of short-term fluctuations or noise is 
to broaden the variance a2(k), as has been found 
experimentally by Schulz & Huber and shown in equa- 
tion (1). It should be noted that the above derivation is 
free from assumptions of the type of probability distri- 
bution representing the short-term fluctuation. Further- 
more, should the short-term fluctuations or noise be 
correlated, the ordinary computed sample variance 
will only in the limit of a large number of observations 
be a measure of a2(k) or, put more precisely, the 
sample variance estimator is only asymptotically un- 
biased (Cox & Lewis, 1966). 

Explicitly, the variance a2(k) for correlated noise 
becomes 

l'~f'? a2(k)=E(k)  + ~2 u~)f(u2)Q(u2- ul)du2du~, (9) 
ll t 

where O(u2-ul) is the autocorrelation function defined 
by 

O ( U  2 - -  U l )  = E ~ . { I , ( u l ) I , , ( u 2 )  }/~2 (10) 
with 

~2 = Ez { In(Ul)In(ul) }. 

Since the noise is stationary, .d 2 will be independent 
of time. 

To ascertain the importance of the contribution of 
noise to the variance o'2(k), the following two simple 
models will be considered: 

~°(r)= {10 f°r 3 = 0 f o r  3 ¢ 0  (10a) 

and 
0(r)= 1 for all values 3. (10b) 

_ 

The. variances for white noise [based on equation 
(10a)] and highly correlated noise [based on equation 
(10b)] become respectively 

and 

with 

a2Wn,TE(k) = E(k)+ (~/Io) 2 lii[g(u)]2du (10c) 

a2CORR(k) = E(k)+ (~/I0)2[ llg(u)du]2 (10d) 

g(t)=Iof(t) . 

The quantities g(t) and ~/Io are what are commonly 
referred to as the reflexion profile and the instrument 
instability factor respectively. 

If a value of 0-01 for ~/Io is employed, together with 
a constant profile g(t) in time (i.e. a step scan) of 1000 
c.p.s, and time limits of 10 s, the numerical values of 
equations (10c) and (10d) are respectively 

and 
O'2WHITE(k) = 11000(c.p.s.)2 

O'2CORR(k) = 20000(c.p.s.) 2 . 

Clearly it is important to determine the type of noise 
present in the measurement system. 

Experiment 

The noise autocorrelation function, O(u2-ul) of equa- 
tion (10), for a Picker FACS-I diffractometer is shown 
in Fig. 1. The crystal and detector were held stationary 
throughout the experiment at a setting corresponding 
to a peak of a high-intensity reflexion. Counts were 
repeatedly accumulated for one second every three 
seconds, for a period of two and one-half hours at a 
time of the day corresponding to high laboratory 
activity. The following procedure was used to eliminate 
the very slow fluctuations of periods greater than 2000 
s and corresponding to the periodic operation of the 
air-conditioning system and other heavy equipment: 
The observed time series was first numerically filtered 
using a first-order recursive low-pass filter (Otnes & 
Enochson, 1972) and the new time series was then 
subtracted from the observed series. The autocorrela- 
tion function for the resultant series corresponds to 
the curve having a filter factor ~ set equal to 0.998. It is 
immediately apparent that the noise in the ~=0-998 
series is highly correlated. In other words, noise having 
a period of less than 2000 s is definitely correlated 
and cannot be removed by repeated intensity remeas- 
urement within this time period [see discussion after 
equation (8)]. 

Power supplies for X-ray generators are essentially 
low-pass filters of line noise. To remove the power- 
line noise, the original time series was filtered using a 
filter factor ~ of 0.67 chosen to match the power- 
supply parameters. This low-pass time series was then 
subtracted from the original series and the autocor- 
relation function of the resultant series computed. 
This is shown in Fig. 1 as a rather scattered horizontal 
trace. We conclude that-when line noise is removed, 
i.e. by good voltage regulation either by the diffractom- 
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eter generator and/or through use of a stable power 
line, the remaining noise is uncorrelated. It is then 
reasonable to suppose that only white noise remains 
and it will be so assumed in the following discussion.'* 

D i s c u s s i o n  

The contribution of the short-term fluctuations in 
equation (10e) to the variance aZ(k) is determined by 
what has be defined as the beam instability parameter 
~/Io and by the profile g(t) of the reflexion considered. 
It should be noted that the quantities ~/Io and g(t) 
are both experimentally measurable. Typical values of 
beam instability range from 0.005 to 0.025 in this 
laboratory. As the reflexion profile g(t) is a function of 
the measurement technique employed, the formulae 
for the variance of the net intensity are derived below 
for the more commonly employed scan techniques. 
The net intensity is defined by 

N = T -  t-L B ,  ( l l )  
t8 

where T is the total measured intensity, tr  is the 
measurement time of the intensity, B is the background 
and tB is the background sampling time. 

(a) Step scan 
The profile g(t) for each step of the scan will be a 

function of the type 

g( t )=  T/tT., (12) 

where the quantities, T and tr, refer to a single step. 
The variance a2(N) then is expressed for n steps by 

a2(N) = ~ T,+(~/Io)ZT~/tT 
/ = 1  

+(ntr/tB)Z[B+(~/lo)Z(BZ/tn)] . (13) 

If the ratio of intensity measurement time tr to the 
background measurement tn is a constant, then for 
reflexions possessing the same number of counts for 
both peak and background, those clases of reflexions 
which have been measured over the greater time period 
will have the smaller variance. 

(b ) Continuous scans 
A simple Gaussian model will be assumed to de- 

scribe, in the absence of an integrating geometry, the 
reflexion profile due to a single wavelength such as 
Kcq.* To take K~xc~2 splitting into account the reflexion 
profile will be represented by a double Gaussian 
profile, 

* A further consequence of poor voltage regulation is that 
reflexions measured close in time will be correlated, with the 
implication that the weight matrix used in the construction of 
the normal equations is no longer diagonal. 

* It should be noted that the final observed profile is the 
result of many convolution operations (Ladell, 1965) which 
in the limit will yield a Gaussian profile (Papoulis, 1965, p. 
233). 
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Fig. I. Plot of the autocorrelation function p as a function of time T. The curve D, corresponding to filter factor 0(=0.995, 
represents a time series filtered to remove noise with periods greater than 2000 s. The curve e, corresponding to filter factor 
0c= 0.67, represents a time series filtered to simulate a stable power supply. 
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T T - ( t - A )  2] 
g ( t ) = z ~ - ~ e x p  ( ~ )  + ½ ~ - - ~ e x p  ( ~ I ' 

(14) 

where T is the total measured intensity, h is the half 
width in time and A is the separation in time of the 
Kcq and K0c2 peaks. If truncation errors due to finite 
scanning limits are small, the variance of the net 
intensity becomes 

2 _ A 2  

( t r t 2  [ B + ( ~ £ )  2 t ~ ] "  (15) 

It is apparent from the above equation that the 
variance of a given reflexion will depend upon its 
profile as seen by the detector. A smaller half width, 
h, increases the sensitivity of a given reflexion to short- 
term fluctuations. Although the Kelc~2 splitting de- 
creases the contribution of short-term fluctuations to 
the variance by as much as ~9, there exists no maximum 
or minimum in the second term of equation (15), the 
term which represents the contributions of the short- 
term fluctuations to the variance of the peaks such that 
a compromise could be achieved between Koqo~z separa- 
tion and half width. The variance for a reflexion with 
small half width will always be greater than a reflexion 
with a larger half width, provided all other quantities 
in equation (15) are equal and scanning limits do not 
truncate the profile. It is assumed that the detector 
aperture is large enough to accommodate the Kelct2 
splitting in order for the above treatment to apply to 
a continuous co scan. 

Conclusion 

The contributions of the short-term fluctuations to the 
variance of a reflexion are dependent upon two factors: 
the instrumental stability and the reflexion profile. The 
greater the time spent in measuring a given reflexion 

the smaller the contribution made by the short-term 
fluctuations. For continuous scans, the greater the 
half width in time of a given reflexion the smaller 
will be the contribution of short-term fluctuations to 
its variance. When Kcqe2 splitting becomes significant, 
the increase in the variance due to short-term fluctua- 
tions will be less for high-angle reflexions than for 
comparable low-angle reflexions. In order for these 
conclusions to be valid the power supply of the gen- 
erator must be well stabilized and the crystal firmly 
mounted. 
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